
kalc User’s Manual

Eduardo M Kalinowski (ekalin@iname.com)

Version 2.2.2

Contents

1 Introduction and Disclaimer 7

2 Using kalc – a brief tutorial 7
2.1 Reverse Polish Notation . 8
2.2 Other functions . 8
2.3 Complex numbers . 8

2.3.1 Polar form . 9
2.4 Entering commands . 9
2.5 Getting help . 9

3 Running kalc 9

4 Using Readline 10
4.1 Readline essentials . 10
4.2 Killing text . 11
4.3 Numeric Arguments . 11
4.4 The history . 11
4.5 Other commands . 12

5 Reusing the last arguments 12
5.1 Using lastarg for error recovery 12

6 Working with other bases 12
6.1 Options relevant to hexadecimal strings 13
6.2 The current word size . 14
6.3 Hexadecimal string operations 14

6.3.1 Shifts and rotations . 15
6.4 Converting to and from hexadecimal strings 16

7 Using the memory 17
7.1 Listing and erasing the memory 18
7.2 Saving objects to disk . 19

8 Other kinds of objects 19
8.1 Strings . 19
8.2 Tagged objects . 19
8.3 Inf and NaN’s . 20

9 The status file 20

1

10 Customization 21
10.1 Angle mode . 21
10.2 Coordinate mode . 21
10.3 Number display format and precision 22
10.4 Prompt . 23
10.5 Number of stack levels to display 23
10.6 Screen width . 23

11 Arithmetic commands reference 23
11.1 The + command . 23
11.2 The - command . 24
11.3 The * command . 24
11.4 The / command . 24
11.5 The inv command . 25
11.6 The mod command . 25
11.7 The chs and neg commands . 25
11.8 The abs command . 25
11.9 The ceil command . 26
11.10The floor command . 26
11.11The ip command . 26
11.12The fp command . 27
11.13The % command . 27
11.14The %t command . 27
11.15The %ch command . 27
11.16The gcd command . 28
11.17The lcm command . 28

12 Exponential and Logarithmic Commands Reference 28
12.1 The exp command . 28
12.2 The ln command . 28
12.3 The ˆ command . 29
12.4 The xroot command . 29
12.5 The sq command . 29
12.6 The sqrt command . 30
12.7 The expm1 command . 30
12.8 The lnp1 command . 30
12.9 The log command . 31
12.10The alog command . 31
12.11The cis command . 31

2

13 Trigonometric commands reference 31
13.1 The pi command . 31
13.2 The sin command . 32
13.3 The cos command . 32
13.4 The tan command . 32
13.5 The sec command . 32
13.6 The csc command . 33
13.7 The cot command . 33
13.8 The asin command . 33
13.9 The acos command . 34
13.10The atan command . 34
13.11The atan2 command . 34
13.12The asec command . 35
13.13The acsc command . 35
13.14The acot command . 35
13.15The vers command . 36
13.16The hav command . 36
13.17The d¿r command . 36
13.18The r¿d command . 36

14 Hyperbolic commands reference 37
14.1 The sinh command . 37
14.2 The cosh command . 37
14.3 The tanh command . 37
14.4 The sech command . 37
14.5 The csch command . 38
14.6 The coth command . 38
14.7 The asinh command . 38
14.8 The acosh command . 38
14.9 The atanh command . 39
14.10The asech command . 39
14.11The acsch command . 39
14.12The acoth command . 39
14.13The gd command . 40
14.14The invgd command . 40

15 Stack manipulation commands reference 40
15.1 The dup command . 40
15.2 The dupdup command . 40
15.3 The ndupn command . 41

3

15.4 The dup2 command . 41
15.5 The dupn command . 41
15.6 The drop command . 42
15.7 The nip command . 42
15.8 The drop2 command . 42
15.9 The dropn command . 43
15.10The clear command . 43
15.11The swap command . 43
15.12The over command . 43
15.13The pick3 command . 44
15.14The pick command . 44
15.15The unpick command . 44
15.16The rot command . 45
15.17The unrot command . 45
15.18The roll command . 46
15.19The rolld command . 46
15.20The depth command . 46
15.21The keep command . 47

16 Miscellaneous commands reference 47
16.1 The rand command . 47
16.2 The rdz command . 47
16.3 The ! command . 47
16.4 The lgamma command . 47
16.5 The perm command . 48
16.6 The comb command . 48
16.7 The min command . 48
16.8 The max command . 48
16.9 The sign command . 48
16.10The psign command . 49
16.11The mant command . 49
16.12The xpon command . 49
16.13The rnd command . 50
16.14The type command . 50
16.15The vtype command . 51
16.16The = command . 51
16.17The eval command . 51
16.18The shell command . 51

4

17 Time and date commands reference 51
17.1 The date command . 52
17.2 The time command . 52
17.3 The ¿hms command . 52
17.4 The hms¿ command . 52
17.5 The date+ command . 53
17.6 The ddays command . 53
17.7 The hms+ command . 53
17.8 The hms- command . 53
17.9 The dow command . 54
17.10The dowstr command . 54
17.11The tstr command . 54

18 Complex number commands reference 55
18.1 The r¿c command . 55
18.2 The re¿c command . 55
18.3 The im¿c command . 55
18.4 The c¿r command . 55
18.5 The re command . 56
18.6 The im command . 56
18.7 The conj command . 56
18.8 The arg command . 56

19 Relational commands reference 57
19.1 The == command . 57
19.2 The != and # commands . 57
19.3 The ¡ command . 57
19.4 The ¿ command . 58
19.5 The ¡= command . 58
19.6 The ¿= command . 58
19.7 The and command . 59
19.8 The or command . 59
19.9 The xor command . 59
19.10The not command . 59

20 String commands reference 60
20.1 The + command (for strings) . 60
20.2 The size command . 60
20.3 The ¿str command . 60
20.4 The str¿ command . 61

5

20.5 The num command . 61
20.6 The chr command . 61
20.7 The head command . 61
20.8 The tail command . 62
20.9 The pos command . 62
20.10The sub command . 62
20.11The repl command . 63
20.12The str¿id and $¿id commands 63
20.13The id¿str and id¿$ commands 63

21 Memory commands reference 64
21.1 The sto command . 64
21.2 The rcl command . 64
21.3 The purge command . 64
21.4 The clvar and clusr commands 64
21.5 The clvar command . 64
21.6 The coldstart command . 64
21.7 The vars command . 65
21.8 The disksto command . 65
21.9 The diskrcl command . 65
21.10The pwd command . 65
21.11The cd command . 65

6

1 Introduction and Disclaimer

This document describeskalc version 2.2.2, a full-featured scientific calculator
using Reverse Polish Notation (see section 2.1). It includes many functions, and a
built-in help system (see section 2.5).

kalc can work with real and complex numbers, and also with strings. It in-
cludes “unlimited” memory to store any object that can be put in the stack. (“Un-
limited” here means that there is no arbitrary limit on the size of the memory.
Obviously, you cannot store, for example, a 2Gb string in memory if you don’t
have that amount of RAM (or disk space, if your system supports virtual memory
and swapping.)

The behaviour ofkalc is very similar to the one of a HP48 or HP49 calculator.
It is not, however, a HP48 emulator nor it uses any code from its ROM.

The source code ofkalc distributed. For instructions on how to compile and
install it, see the fileINSTALL . There is also a package with a pre-compiled MS-
DOS executable.

You may distributekalc freely, but only in its whole, unmodified form. You
are allowed to make modifications to this program, but if you do so, youmust not
redistributed your modificated version. For details, see the fileCOPYING.

The above conditions do not necessarily apply to the GNU Readline Library,
used by this program. See the fileCOPYING.lib for details on the conditions of
use and redistribution of that library.

This program is distributed in the hope it will be useful, but it comes without
any kind of warranty. Use it at your onw risk.

2 Using kalc – a brief tutorial

To runkalc, just enterkalc at your shell prompt. If this is the first time you run the
program, you’ll see a message saying “Status file invalid/inexistent – using default
settings”. Ignore that message for now. You’ll then see a> prompt. Whenever you
see this prompt you can enter commands. For example, enter2 3 + . You’ll see
the result (5), and another prompt.

The entire section up to the above should look like this:

$ kalc
Status file invalid/inexistent -- using default settings

kalc v2.2.2, Copyright (C) 1999-2000 Eduardo M Kalinowski (ekalin@iname.com)

> 2 3 +
1: 5

7

>

The fact that there is prompt showing means that you can enter more com-
mands. For example, let’s divide the above result by 3. Just enter3 / and press
ENTER. The result is shown.

2.1 Reverse Polish Notation

As you may have noted from the above two calculations, the operator (the + or the
/) has comeafter the operands (the numbers.) This curious thing is calledReverse
Polish Notation.

In RPN, the operatorsalwayscome after the operands. For example, the ex-
pression(5 + 2)/3 would be written as “5 2 + 3 /”. The order of evaluation is from
left to right always; parenthesis are never necessary.

kalc uses astackto do its calculations.kalc’s stack is just like a pile of plates:
the first plate put on the pile is the last one to be used. The difference is thatkalc’s
stack is upside down, ie, the “plates” are put (and thus removed) from the bottom.

When you enter a number, it is put in the bottom of the stack, and any numbers
previously there are shifted up. The operations you do remove numbers from the
bottom of the stack, and them put their result(s) again in the bottom of the stack.

The bottommost stack level is numbered “1”. The above levels get increasing
numbers. Most calculations will take their arguments from level one (and some-
times level two also), and return their result to level one.

The stack inkalc doesn’t have a fixed size, it is only limited by the amount of
available memory. But only the four bottommost are displayed by default. (This
can be changed, see sections 3 and 10.5.) If you want to see more, use the=
command (see section 16.16.)

2.2 Other functions

Besides the basic arithmetic operators,kalc has a lot of built-in scientific functions.
Try, for example,sin , exp , cosh . Remember that first you put the argument in
the stack, then you run the function.

All mathematical functions are called inkalc by their symbols. So, even if I
haven’t told you how to do it, you can probably guess how to calculate the hyper-
bolic arc tangent of a number.

2.3 Complex numbers

kalc can work with complex numbers, too. To put a complex number in the stack,
use the following syntax:(x , y) , wherex is the real part andy is the imaginary

8

part. You can omit the space or comma delimiting the two parts, but not both.
Almost all operations that can be applied to real numbers can also be used

with complex numbers. This included not only the basic functions like+ but also
functions likecosh or ln .

2.3.1 Polar form

Complex numbers can be entered and/or displayed in their polar forms. The format
is (r , < theta) , wherer is the magnitude andtheta is the angle. You may
omit the space and/or the comma if you wish.

To configurekalc to display complex numbers in polar form, see section 10.2.
The current angle mode (degrees or radians) is used to display the angle of

complex numbers. Refer to section 10.1 to learn how to change the angle mode.

2.4 Entering commands

The most basic way to enter a command (and seldom used) is to enter that com-
mand and pressENTER. However, you can enter more than one command at a
time, just separate them with spaces. Numbers should also be separated from com-
mands and other numbers with a space.

If you just pressENTER without entering any command, the stack will be
shown.

The case is not important when entering commands.dup is the same asDUP
or dUp.

This program uses the GNU Readline Library. This allows you to edit the line
with the commands using many powerful features. The most basic ones are moving
the cursor and inserting text in arbitrary locations. But there is much more. See
section 4 or the GNU Readline Manual for more information on what you can do.

2.5 Getting help

At any time, you can use thehelp command to get help. If you just type “help ”,
you’ll get a list of commands. To get help on a particular command, usehelp
followed by that command’s name, for examplehelp sin .

3 Running kalc

kalc supports a few command line options that control its behaviour. The syntax
is:

kalc [options] [--] [commands]

9

The options are-d , -s , -m, -b , --help and--version . Any unprocessed
options will be taken as commands, and these will be executed as if they had been
entered on the prompt. If you use-- anywhere on the command line, everything
that follows will be considered a command, even if it starts with a- .

The -d option must be followed by a numeric argument. It specifies how
many levels of the stack will be shown by default. If you want the whole stack to
be shown always, specify -1 as the argument. Note that if the argument is 0, the
stack will not be displayed.

If this option is present, it overrides the number saved in the status file (see
section 9.)

The-s and-m options tellkalc not to load the stack and memory, respectively,
from the status file (see section 9.)

The-b options specifies thatkalc should be run inbatch mode. After process-
ing all the commands in the command line and printing the stack, it exits.

The --help option prints a help message describing the command line op-
tions and exits successfully. The--version option printskalc’s version and
exits successfully.

4 Using Readline

kalc uses the GNU Readline Library. This allows you to edit the commands you’ve
entered as if you were using a text editor. You can move the cursor, insert or delete
text, and much more. If you are familiar with Readline, you probably want to
skip this section. This is because the Readline library provides a consistent user
interface between all programs that use it.

4.1 Readline essentials

You can enter characters as usual. Just type them, and they’ll appear on the
screen. Use the Backspace key (or the Delete key, if your keyboard doesn’t have
a Backspace key) to delete the last character. To move the cursor, use the left and
right arrow keys. If your keyboard doesn’t have arrow keys, the keys Control-b and
Control-f will move the cursor to the left and right, respectively. To move forward
or backward a word, use the Alt-b and Alt-f keys. The “Alt” key may be labelled
“Edit” on some keyboards. If you don’t have an Alt or Edit key, press ESC, release
it and then press b (or f). This combination works for all commands that use the
Alt key.

To move to the beginning of the line, use Control-a. To move to the end of the
line, use Control-e.

10

Another useful command is Control-(underscore). It undoes the last action.
So, if you make a mistake, just press Control-to undo it.

4.2 Killing text

Killing means deleting text from a line, but saving it somewhere it can be later
brought again. The operation of bringing back killed text is called “yanking”.

Whenever you use one of the kill commands, the text is saved in the “kill ring”.
Any number of consecutive kills saves the text together, so when you yank it you’ll
get it all back. The kill-ring is not line-specific, you may yank text from a previous
line.

The most frequently used kill and yank commands are:

Control-k Kill text from the cursor position to the end of the line.

Alt-d Kill from the cursor postion to the end of the current word, or, if between
words, to the end of the next word.

Alt-Backspace (or Alt-Del in some computers)Kill from the cursor postion to
the start of the current word, or, if between words, to the start of the previous
word.

Control-y Yank the most recently killed text back at the cursor position.

Alt-y Rotate the kill-ring. This command can only be used if the previous com-
mand was Control-y or Alt-y. This replaces the last yanked text with the text
that was killed before it.

4.3 Numeric Arguments

Most Readline commands support numeric arguments. For example, if you give
the argument 5 to the command Control-f (go forward a character) it goes five
characters forward.

To enter an argument to a command, press Alt and the argument digit simul-
taneously. For example, to give the Control-f command an argument of 10, press
Alt-1 0 Control-f. Arguments can also be negative, if you press Alt– (hyphen) as
the first argument digit. If you just specify “-” as argument, it is equivalent to -1.

4.4 The history

All commands you type are saved in the history. To cycle through the commands in
the history in order, use the up and down arrow keys or the Control-p and Control-n
keys.

11

To search the history for a specific entry, press Control-r then enter part of the
command. As your entry matches the history lines, they are shown. When you’ve
found what you wanted, press Enter to execute the command or any other key to
execute the action bound to that key. To finish a search, use Control-g.

4.5 Other commands

In kalc, use the Tab key to insert the element in level one at the command line.
With an argument, inserts the number at the given level.

There are also many other commands for Readline, and it can also be cus-
tomized for your personal taste. For more information, see the Readline manual.

5 Reusing the last arguments

Everytime you run a command, its arguments are stored in a special area called the
“last arguments list”, or “lastarg” for short. You can bring the commands from that
list with the lastarg command. Here is an example of its use:

> 6 9 *
1: 54
> lastarg
3: 54
2: 6
1: 9
> +
2: 54
1: 15

5.1 Using lastarg for error recovery

The memory commandspurge andsto (see 7) have a slightly different behavior
regarding the last arguments.

When you run thepurge command, the former contents of that variable are
stored (and also the name), so that you can restore the variable withlastarg
sto .

Thesto command stores the name and the former contents of that variable, so
that you can recover from an accidentalsto with lastarg sto lastarg .

6 Working with other bases

kalc can work with integers (but not real numbers) in bases other than 10. You can
convert numbers to and from any base between 2 and 10, and do several kinds of

12

manipulation to them.
To work with numbers in other bases, a new kind of object is used: the hex-

adecimal string (or hxs for short.) The name “string” comes from the HP48, and
is kept for consistency, however, inkalc these objects are more closely related to
integers. Despite the name, all bases from 2 to 10 can be used.

The syntax of that object is:

<number><base specifier>

After the# sign, you may put spaces. However, the base specifier must not be
separated from the number.

The number is simply the representation of the number. The valid characters
depend on the base used (see below.) For bases greater than 10, the letter “a”
represents 11, “b” represents 12, and so on. You can enter the letters in upper or
lower case (but there is a catch — read on.)

The base specifier is an at sign (@) followed by the base (which is always
written in decimal.) So, base 2 is represented as@2and base 27 is@27.

For the most commonly used bases 2, 8, 10, and 16 there are some shortcuts:
appending a “b” after the number makes it binary (the same as “@2”,) an “o” rep-
resents octal, a “d” decimal and “h”. When the hexadecimal strings are displayed,
that notation is also used.

If you do not specify a base, then the current base (see section 6.1) will be
used to parse the number. You must be careful, however, because if the number
ends with a lowercase “b”, “o”, “d” or “h”, that will be taken as a base specifier. To
avoid that happening, you can end the number with an uppercase letter or explicitly
specify the base.

Here are some examples, all of them represent the number 123:

1111011b
443@5
173o
123d
A3@12
7Bh
4N@25
3F@36

6.1 Options relevant to hexadecimal strings

There are two options that are relevant to hexadecimal strings: the current base and
word size.

The current base is the base that the numbers will be displayed in the stack, and
the numbers entered without a explicit base will be parsed in that base.

13

To set the base, use theset command:

> set base x

wherex is the desired base, between 2 and 36. For the bases 2, 8, 10 and
16, you can useset base bin , set base oct , set base dec andset
base hex , respectively. You can also simply typebin , oct , dec or hex .

6.2 The current word size

The current word size affects the way that numbers are displayed and used in cal-
culations.

The word size can be this way:

> set wordsize x

wherex is the desired word size. The minimum value is 1, the maximum
depends on your system. Whenkalc was built, it checked wheter 64-bit numbers
were available. If possible, they were used. If not, then 32-bit numbers were used.
If you don’t know the maximum word size, then just enter a big number such as
99, andkalc will use the greates word size possible. You can see the base with the
show wordsize command.

Another way to set the current word size is by putting a real number or an
hex string in the stack representing the desired word size and then run thestws
command. Thercws command puts in the stack a real number representing the
current word size.

Whenever an hexadecimal number is displayed, it is truncated to the n least
significant bits, where n is the current word size setting. Whenever you do some
operation on an hexadecimal number (see section 6.3, the result is also truncated to
the current word size. Shifts and rotations (see section 6.3.1) only change the least
significant bits, and the result is then truncated.

6.3 Hexadecimal string operations

All arithmetic commands also work for hexadecimal strings. You can add, sub-
tract, divide and multiply hexadecimal strings normally. You can even mix real
numbers in the calculation: they will be automatically be converted to hexadeci-
mal strings (but the fractional part will be lost.) Theneg command produces the
two’s complement of the number.

14

6.3.1 Shifts and rotations

kalc includes a wide variety of commands for shifting and rotating the hexadecimal
string bits. They all take into consideration the current word size (see section 6.2.)

The available commands are:

sl This command shifts the hxs one bit to the left. The most significant bit is lost.
Here is an example, assuming the current word size is 4:

1: # 1011b
> sl
1: # 110b
> sl
1: # 1100b

slb This command shifts the hxs one byte to the left. The most significant byte is
lost. Here is an example, assuming the current word size is 32:

1: # CAFEBABEh
> slb
1: # FEBABE00h
> slb
1: # BABE0000h

sr This command shifts the hxs one bit to the right. The least significant bit is lost.
Here is an example, assuming the current wordsize is 4:

1: # 1101b
> sr
1: # 110b
> sr
1: # 11b

asr This command does an arithmetic shift one bit to the right. The most signifi-
cant bit is preserved in the operation. The least significant bit is lost. Here is
an example, assuming the current word size is 4:

1: # 1010b
> asr
1: # 1101b
> asr
1: # 1110b

srb This command shifts the hxs one byte to the right. The least significant byte
is lost. Here is an example, assuming the current word size is 32:

15

1: # DEADBEEFh
> srb
1: # DEADBEh
> srb
1: # DEADh

rl This command rotates the hxs one bit to the left. Here is an example, assuming
the current word size is 4:

1: # 1101b
> rl
1: # 1011b
> rl
1: # 111b

rlb This command rotates the hxs one byte to the left. Here is an example, assum-
ing the current word size is 32:

1: # CAFEBABEh
> rlb
1: # FEBABECAh
> rlb
1: # BABECAFEh

rr This command rotates the hxs one bit to the right. Here is an example, assuming
the current word size is 4:

1: # 1001b
> rr
1: # 1100b
> rr
1: # 110b

rrb This command rotates the hxs one byte to the right. Here is an example,
assuming the current word size is 32:

1: # DEADBEEFh
> rrb
1: # EFDEADBEh
> rrb
1: # BEEFDEADh

6.4 Converting to and from hexadecimal strings

There are two commands for converting to and from hexadecimal strings. Here
they are:

16

r>b This command converts the real number in level one to an hexadecimal string.
The fractional part is discarded. Example:

1: 12345
> r>b
1: # 12345d
> 413442.4321
2: # 12345d
1: 413442.4321
> r>b
2: # 12345d
1: # 413442d

b>r This command converts an hexadecimal string to a real number. Example:

1: # 134214d
> b>r
1: 134214

7 Using the memory

Besides the stack, you can store all objects that can be present inkalc’s stack in
the memory, a permanent place of storage. The memory has no fixed size, you can
store as many objects as your computer’s memory and disk can hold.

To store an object in memory, you must give it a name, which will be later used
to bring it back when you want. Such names inkalc are calledidentifiers. It is a
piece of text delimited by single quotes. Unlike in the HP48, identifiers inkalc can
have any characters, even those not allowed on the HP48 such as +, *, space, etc.
The identifier may even be a null identifier:’’ . When entering the identifier, you
may include a single quote in it using the\’ escape sequence.

To store an object, put that object in level two of the stack and an identifier in
level one. Then, just run the commandsto and the object is stored.

To recall an object from the stack, put in level one the identifier, and run the
rcl command. A copy of the object is put in level one. The original object is not
affected: you may recall it again if you want.

There is an easier way to recall objects: instead of putting the identifier on the
stack (delimited by single quotes), just enter the identifier as if it were a command,
without the quotes. You’ll get the object in the stack. If there is no object with that
name, you’ll end up with the identifier in the stack. However, this shortcut will not
work if the identifier has spaces in it. In this case, you’ll need to use the standard
approach.

17

The memory is stored in the status file (see section 9). When startingkalc, you
can use the-m option to prevent the memory from being loaded. For more details
on this, see section 3.

Here are some examples of the usage of the memory:

> pi
1: 3.14159265358979
> ’AConstant’
2: 3.14159265358979
1: ’AConstant’
> sto
> ’AConstant’
1: ’AConstant’
> rcl
1: 3.14159265358979
> AConstant
2: 3.14159265358979
1: 3.14159265358979

7.1 Listing and erasing the memory

When you want to see all the objects stored in memory, you can use thevars
command. It will output a list of all objects in memory. Here is an example (con-
tinuation of the previous):

> 1 exp ’Another Constant’
2: 2.71828182845905
1: ’Another Constant’
> sto
> "Hello World"
1: "Hello World"
> ’String’
2: "Hello World"
1: ’String’
> sto
> (3, -2) ’cmp’ sto
> vars
’AConstant’ ’cmp’ ’String’
’Another Constant’

To erase one object from the memory, put that object’s identifier in the stack
and run thepurge command.

If you want to erase the whole memory, use theclvar command. This com-
mand will eraseall your memory andthere is no way of bringing it back. Be-
cause of this, the command asks your for confirmation before doing the operation.

18

7.2 Saving objects to disk

In addition to saving objects inkalc’s memory, objects can also be saved to the
disk. To do this, put the object in level two, and the path of the file you want to
save in level one (this is an identifier). Then run thedisksto command. The
object will be saved to the named file.

To recall an object from a file, put the file’s path (an identifier) in the stack, and
run thediskrcl command. If the file contains a valid object, it will be loaded in
level one.

If you give a relative path as the name of the file, it is considered as relative
to the current working directory. To discover which directory is this, run thepwd
command. It will output the directory. To change the current directory, put the
directory you want to go to in level one (an identifier) and run thecd command.

8 Other kinds of objects

8.1 Strings

In addition to being able of manipulating numbers,kalc can also work with strings.
To include a string in the stack, surround it with double quotes, for example:

> "This is a string"
1: "This is a string"
>

When entering a string, you may include a new-line character with the escape
sequence\n or a double-quote with\" .

8.2 Tagged objects

Any object inkalc can have atag, a short (or long, if you wish) string that identifies
it. To create a tagged object, prefix it with: tag : , wheretag is the name you
want to give to the object.

To give an existing object a tag, put that object in level two and the tag (a string,
or any other object, which will be converted to a string) in level one, and run the
>tag command. Here are some examples:

> :Tag: 12345
1: Tag: 12345
> (12 -5)
2: Tag: 12345
1: (12,-5)
> Result

19

3: Tag: 12345
2: (12,-5)
1: ’Result’
> >tag
2: Tag: 12345
1: Result: (12,-5)

You can work with tagged objects as if they were normal objects. The tags will
be removed, however, if you do any operation on them.

To strip all tags from an object, use thedtag command.

8.3 Inf and NaN’s

Provided your system supports it,kalc has support for non-stop calculations. This
means you’ll never get an error while you’re doing your calculations, except if you
do not enter enough arguments or if you mistake the argument type. But you’ll not
get an error for dividing 1 by 0, or even 0 by 0.

To achieve this, two concepts are important: Inf and NaN. You’ll get Inf as
a result whenever you run a function which an argument that would result in a
very large result, such as 1e300 * 1e300, or 2 divided by 0. You can read ”Inf” as
infinity, and that’s what it means. Its complement is -Inf, which is negative infinity.

The other concept is NaN (short for not-a-number). You get this result when
the result of a function you called is undefined, such as 0/0, Inf-Inf, and so on.

If you want to get one of this values in the stack, you can just use the commands
inf , -inf andnan .

9 The status file

You do not have to worry about losing your work when you exitkalc. You can
save the state of the calculator and load it again whenever necessary. You can even
keep several saved states. This is achieved with thestatus files.

Whenkalc is started, it reads the last file that was used. If you haven’t told
kalc to use a different file, it will be a file called.kalc on your home directory (if
you are using a UNIX system) orkalc.ini in the current directory (if you are
using a MS-DOS system). In this file, all your preferences are saved (see section
10), the last arguments (see section 5), the stack (see section 2.1 and the memory
(see section 7).

When you exitkalc, the status file is saved automatically. If for some reason
you do not want this to happen, exitkalc with theabort command. This will not
save the status file. At any moment, you can use thesave command to save the
status.

20

If you want to open another status file, put its name in the stack (a identifier),
and run theopen command. If it is necessary, you’ll be asked to save the current
if. Then, the new file will be opened.

To save the current status under a different name, use thesaveAs command.
Just put the file name (as an identifier) in level one, and run the command.

If for some reason you want to resetkalc to its default state, run thecold-
start command. Note that this will erase the memory, the stack, the last ar-
guments and return all the preferences to their default values without asking for
confirmation.

10 Customization

Several aspects ofkalc can be customized. These include, for example, the way to
display numbers and the angle mode. The commands that allow this areset and
show.

Theset command, as you might have guessed, sets a specific option inkalc.
A few of these options can also be set in a different way, more RPN-like. Details
will be given in the appropriate sections. Theshow command displays the current
value for a specific option.

Both commands, if given no option after it, display a list of options (equivalent
to typinghelp show).

10.1 Angle mode

The angle mode can be set to either radians (the default) or degrees. To set it, use
theset command this way:

> set anglemode {deg|rad}

Choosing the one you want. Or you can use the commandsdeg andrad to
select degress and radians, respectively.

Note: when dealing with complex numbers, the angle mode is ignored, and is
assumed to be always radians.

10.2 Coordinate mode

The coordinate used to represent complex numbers system can be set to rectangular
(the default) or polar. It is set this way:

> set coordinate {rect|cylin}

21

Specifyingrect selects rectangular coordinates, andcylin specifies cylin-
drical (polar) coordinates. You can also select rectangular mode with therect
command, and polar mode with the commandspolar andcylin (both are equiv-
alent.)

10.3 Number display format and precision

These options are closely related. The number display format specifies how the
numbers will be shown (the four available formats are described below), and the
precision the number of decimal places to show in each mode. Note that precision
does not really alter the precision of the calculator; all calculations are done using
all possible precision numbers, but not all must be shown should you want it this
way.

To set the number format, use the command

> set number-format {std|fix|sci|eng}

The available number formats are:

std The “standard” mode is the common mode for displaying numbers: if possible,
the number is not displayed in scientific notation, and decimal places are only
shown if they are present. Up to 15 decimal places may be shown, but no
trailing zeros are added.

fix The “fixed precision” mode always display the number of decimal places spec-
ified by the precision option. Trailing zeros are added if necessary.

sci The “scientific notation” mode always displays numbers using scientific nota-
tion, with the number of decimal places specified by the precision option.

eng The “engineering notation” mode displays precision + 1 significant digits us-
ing engineering notation. Engineering notation is like scientific notation, but
the exponent is always a multiple of three.

To set the precision, use theset command as follows:

> set precision <n>

Where<n> is the number of decimal places you want. It must be between zero
and fifteen, inclusive. Numbers less than zero are treated as zero, and numbers
greater than fifteen are treated as fifteen. Only the integer part of the argument is
considered.

Note that the precision is ignored for thestd mode.
You can also set the precision with the commandsstd , fix , sci andeng .

All but std take an argument in level one: the precision.

22

10.4 Prompt

You can change the prompt for commandskalc uses. You can set it to anything
you want, up to 20 characters. Use theset command to change it:

> set prompt <text>

If you want to include spaces in the prompt, surround the entire prompt with
double quotes.

10.5 Number of stack levels to display

By default,kalc displays only the bottommost four stack levels. You can change
this number with theset lines command.

This option can be temporarily overriden with the= command (see section
16.16).

10.6 Screen width

The width of the screen can be set this way:

> set width <n>

Where<n> is the number of columns. The default is 78. The minimum is 25,
values less than that will be rejected.

11 Arithmetic commands reference

11.1 The + command

This command adds two numbers.
Examples:

> 12.5
1: 12.5
> 3.7
2: 12.5
1: 3.7
> +

1: 16.2
> (1, 3) (-2 4)
3: 16.2
2: (1,3)
1: (-2,4)

23

> +
2: 16.2
1: (-1,7)

11.2 The - command

This command subtracts two numbers.
Examples:

> 15.7 3.2
2: 15.7
1: 3.2
> -
1: 12.5
> (4 -3) (1 -1)
3: 12.5
2: (4,-3)
1: (1,-1)
> -
2: 12.5
1: (3,-2)

11.3 The * command

This command multiplies two numbers.
Examples:

> 3.4 -5.2 *
1: -17.68
> (4, 2) (3 -1) *
2: -17.68
1: (14,2)

11.4 The / command

This command divides two numbers.
Examples:

> 10 3 /
1: 3.33333333333333
> (4 8) (2 2)
3: 3.33333333333333
2: (4,8)
1: (2,2)
> /
2: 3.33333333333333
1: (3,1)

24

11.5 The inv command

This command returns one divided by a number.
Examples:

> 5 inv
1: 0.2
> (4 2)
2: 0.2
1: (4,2)
> inv
2: 0.2
1: (0.2,-0.1)

11.6 The mod command

This command returns the remainder of the division ofy (level two) andx (level
one).

Example:

> 10 3 mod
1: 1

11.7 The chs and neg commands

Thesse commands change the sign of a number.
Examples:

> 4
1: 4
> chs
1: -4
> neg
1: 4

11.8 The abs command

This command returns the absolute value of a number. For real numbers, this is
equal to the number without its sign. For complex number, it is the square root of
the sum of the squares of the real and imaginary parts.

Examples:

> 4 abs
1: 4
> -5 abs

25

2: 4
1: 5
> (3 4)
3: 4
2: 5
1: (3,4)
> abs
3: 4
2: 5
1: 5

11.9 The ceil command

This command returns the smallest integer greater than or equal to its input.
Examples:

> 3.9 ceil
1: 4
> -3.9 ceil
2: 4
1: -3

11.10 The floor command

This command returns the greatest integer less than or equal to its input.
Examples:

> 3.9 floor
1: 3
> -3.9 floor
2: 3
1: -4

11.11 The ip command

This command returns the integer part of its input.
Examples:

> pi
1: 3.14159265358979
> ip
1: 3

26

11.12 The fp command

This command returns the fractional part of its input.
Examples:

> pi
1: 3.14159265358979
> fp
1: 0.141592653589793

11.13 The % command

This command returnsy (level two) percent ofx (level one).
Examples:

> 200 25 %
1: 50
> 314 13.9 %
2: 50
1: 43.646

11.14 The %t command

This command returns the percent of the level two argument that is represented by
the level one argument.

Examples:

> 200 25 %t
1: 12.5
> 520 52 %t
2: 12.5
1: 10

11.15 The %ch command

This command returns the percentage change fromy (level two) tox (level 1) as a
percentage ofy.

Examples:

> 150 175 %ch
1: 16.6666666666667
> 215 190 %ch
2: 16.6666666666667
1: -11.6279069767442

27

11.16 The gcd command

This command returns the greatest common divisor of two numbers.
Examples:

> 411056775237 61754894058 gcd
1: 1257
> 895324789 3745907 gcd
2: 1257
1: 1

11.17 The lcm command

This command returns the least common multiple of two numbers.
Examples:

> 799984123 239874 lcm
1: 191895391520502
> 104890 2349002 lcm
2: 191895391520502
1: 123193409890

12 Exponential and Logarithmic Commands Reference

12.1 The exp command

This command returnse raised to its argument.
Examples:

> 1 exp
1: 2.71828182845905
> 3.7 exp
2: 2.71828182845905
1: 40.4473043600674
> pi (0, 1) * exp
3: 2.71828182845905
2: 40.4473043600674
1: (-1,1.22460635382238e-16)

12.2 The ln command

This command returns the natural logarithm (basee) of its argument.
Examples:

28

> 4
1: 4
> ln
1: 1.38629436111989
> (3 2)
2: 1.38629436111989
1: (3,2)
> ln
2: 1.38629436111989
1: (1.28247467873077,

0.588002603547568)

12.3 The ˆ command

This command raisesy (level two) tox (level one).
Examples:

> 2 10 ˆ
1: 1024
> 3.75 2.48 ˆ
2: 1024
1: 26.521467069654
> (2 3) (1 -1)
4: 1024
3: 26.521467069654
2: (2,3)
1: (1,-1)
> ˆ
3: 1024
2: 26.521467069654
1: (9.20434248861135,

-2.84401950837022)

12.4 The xroot command

This command returns thenth (level one) root ofx (level two).
Examples:

> 2472806570256 4 xroot
1: 1254

12.5 The sq command

This command squares its argument.
Examples:

29

> 16 sq
1: 256
> (2 1)
2: 256
1: (2,1)
> sq
2: 256
1: (3,4)

12.6 The sqrt command

This command returns the square root of its argument.
Examples:

> 32041 sqrt
1: 179
> (14229, -37620) sqrt
2: 179
1: (165,-114)
> -100 sqrt
3: 179
2: (165,-114)
1: (6.12303176911189e-16,10)

12.7 The expm1 command

This command returns exp(x) - 1. It is more accurate thanexp whenx is close to
zero.

Examples:

> 3.5 expm1
1: 32.1154519586923
> -4.2 expm1
2: 32.1154519586923
1: -0.985004423179522

12.8 The lnp1 command

This command returns ln(1 +x). It is more accurate thanln whenx is close to
zero.

Examples:

> 45 lnp1
1: 3.8286413964891
> 72.5 lnp1
2: 3.8286413964891
1: 4.29728540621879

30

12.9 The log command

This command returns the decimal (base 10) logarithm of its argument.
Examples:

> 1e20 log
1: 20
> 1724.3123 log
2: 20
1: 3.23661592615434

12.10 The alog command

This command raises 10 to its argument.
Examples:

> 21 alog
1: 1e+21
> 7.1524
2: 1e+21
1: 7.1524
> alog
2: 1e+21
1: 14203651.2404801

12.11 The cis command

This function returns the complex exponential of its argument, that is, exp(ix).
Examples:

> pi cis
1: (-1,

1.22460635382238e-16)
> 1 cis
2: (-1,

1.22460635382238e-16)
1: (0.54030230586814,

0.841470984807897)

13 Trigonometric commands reference

13.1 The pi command

This command puts the constant pi (3.14159...) in the stack.
Example:

31

> pi
1: 3.14159265358979

13.2 The sin command

This command returns the sine of its argument.
Example:

> set anglemode rad
> pi 2 / sin
1: 1
> pi 3 * 2 / sin
2: 1
1: -1

13.3 The cos command

This command returns the co-sine of its argument.
Examples:

> set anglemode rad
> pi 2 / cos
1: 6.12303176911189e-17
> pi chs cos
2: 6.12303176911189e-17
1: -1

13.4 The tan command

This command returns the tangent of its argument.
Examples:

> set anglemode rad
> pi 4 / tan
1: 0.0137086425343941
> .5 tan
2: 0.0137086425343941
1: 0.00872686779075879

13.5 The sec command

This command returns the secant of its argument.
Examples:

32

> set anglemode rad
> pi sec
1: -1
> pi 4 / sec
2: -1
1: 1.41421356237309

13.6 The csc command

This command returns the co-secant of its argument.
Examples:

> set anglemode rad
> pi 2 / csc
1: 1
> pi -3 / csc
2: 1
1: -1.15470053837925

13.7 The cot command

This command returns the co-tangent of its argument.
Examples:

> set anglemode rad
> pi 3 / cot
1: 0.577350269189626
> pi 1.2 * cot
2: 0.577350269189626
1: 1.37638192047117

13.8 The asin command

This command returns the arc sine of its argument.
Examples:

> .5 asin
1: 0.523598775598299
> 1 asin
2: 0.523598775598299
1: 1.5707963267949
> 2 asin
3: 0.523598775598299
2: 1.5707963267949
1: (1.5707963267949,

-1.31695789692482)

33

13.9 The acos command

This command returns the arc co-sine of its argument.
Examples:

> set anglemode rad
> .5 acos
1: 1.0471975511966
> 1 acos
2: 1.0471975511966
1: 0
> 2 acos
3: 1.0471975511966
2: 0
1: (0,-1.31695789692482)

13.10 The atan command

This command returns the arc tangent of its argument.
Examples:

> set anglemode rad
> 1 atan
1: 0.785398163397448
> 2 atan
2: 0.785398163397448
1: 1.10714871779409
> .2 atan
3: 0.785398163397448
2: 1.10714871779409
1: 0.197395559849881

13.11 The atan2 command

This command returns the arc tangent ofy/x, wherey is in level two andx is in
level one. The signs of both arguments are used to calculate the quadrant of the
result.

Examples:

> set anglemode rad
> -4 -1.7 / atan
1: 1.16892567935444
> -4 -1.7 atan2
2: 1.16892567935444
1: -1.97266697423535

34

13.12 The asec command

This command returns the arc secant of its argument.
Examples:

> set anglemode rad
> 2 asec
1: 1.0471975511966
> 4.6 asec
2: 1.0471975511966
1: 1.35165526779736
> .5 asec
3: 1.0471975511966
2: 1.35165526779736
1: (0,-1.31695789692482)

13.13 The acsc command

This command returns the arc co-secant of its argument.
Examples:

> set anglemode rad
> 2 acsc
1: 0.523598775598299
> 4.6 acsc
2: 0.523598775598299
1: 0.219141058997532
> .5 acsc
3: 0.523598775598299
2: 0.219141058997532
1: (1.5707963267949,

-1.31695789692482)

13.14 The acot command

This command returns the arc co-tangent of its argument.
Examples:

> set anglemode rad
> 2 acot
1: 0.463647609000806
> 4.6 acot
2: 0.463647609000806
1: 0.214060683563822
> .5 acot
3: 0.463647609000806
2: 0.214060683563822
1: 1.10714871779409

35

13.15 The vers command

This command returns the versine of its argument. The versine of an anglex is
defined as1 - cos(x).

Examples:

> set anglemode rad
> pi 4 / vers
1: 0.292893218813452
> pi 3 / vers
2: 0.292893218813452
1: 0.5

13.16 The hav command

This command returns the haversine of its argument. The haversine of an anglex
is defined as vers(x)/2.

Examples:

> set anglemode rad
> pi 4 / hav
1: 0.146446609406726
> pi 3 / hav
2: 0.146446609406726
1: 0.25

13.17 The d¿r command

This command converts from degrees to radians.
Examples:

> 45 d>r
1: 0.785398163397448
> 60 d>r
2: 0.785398163397448
1: 1.0471975511966

13.18 The r¿d command

This command converts from radians to degrees.
Examples:

> pi r>d
1: 180
> pi 3 / r>d
2: 180
1: 60

36

14 Hyperbolic commands reference

14.1 The sinh command

This command returns the hyperbolic sine of its argument.
Examples:

> 2 sinh
1: 3.62686040784702
> (3 4) sinh
2: 3.62686040784702
1: (-6.548120040911,

-7.61923172032141)

14.2 The cosh command

This command returns the hyperbolic co-sine of its argument.
Examples:

> 2 cosh
1: 3.76219569108363
> (3 4) cosh
2: 3.76219569108363
1: (-6.58066304055116,

-7.58155274274654)

14.3 The tanh command

This command returns the hyperbolic tangent of its argument.
Examples:

> 2 tanh
1: 0.964027580075817
> (3 4) tanh
2: 0.964027580075817
1: (1.00070953606723,

0.00490825806749603)

14.4 The sech command

This command returns the hyperbolic secant of its argument.
Examples:

> 2 sech
1: 0.26580222883408

37

14.5 The csch command

This command returns the hyperbolic co-secant of its argument.
Examples:

> 2 csch
1: 0.275720564771783

14.6 The coth command

This command returns the hyperbolic co-tangent of its argument.
Examples:

> 2 coth
1: 1.03731472072755

14.7 The asinh command

This command returns the hyperbolic arc sine of its argument.
Examples:

> 2 asinh
1: 1.44363547517881
> (4 -1) asinh
2: 1.44363547517881
1: (2.12255012381007,

-0.238317461809866)

14.8 The acosh command

This command returns the hyperbolic arc co-sine of its argument.
Exmamples:

> 2 acosh
1: 1.31695789692482
> (4 -1) acosh
2: 1.31695789692482
1: (2.09659645728889,

-0.252179408716353)
> .5 acosh
3: 1.31695789692482
2: (2.09659645728889,

-0.252179408716353)
1: (0,1.0471975511966)

38

14.9 The atanh command

This command returns the hyperbolic arc tangent of its argument.
Examples:

> .5 atanh
1: 0.549306144334055
> (4 5) atanh
2: 0.549306144334055
1: (0.0964156202029962,

1.44830699523146)
> 2 atanh
3: 0.549306144334055
2: (0.0964156202029962,

1.44830699523146)
1: (0.549306144334055,

-1.5707963267949)

14.10 The asech command

This command returns the hyperbolic arc secant of its argument.
Examples:

> .5 asech
1: 1.31695789692482

14.11 The acsch command

This command returns the hyperbolic arc co-secant of its argument.
Examples:

> 2 acsch
1: 0.481211825059603

14.12 The acoth command

This command returns the hyperbolic arc co-tangent of its argument.
Examples:

> 2 acoth
1: 0.549306144334055

39

14.13 The gd command

This command returns the Gudermannian function of its argument. The Guder-
mannian function ofx is defined as gd(x) = 2atan(eˆx) - pi/2.

Examples:

> 1 gd
1: 0.865769483239659
> (1.5 -1) gd
2: 0.865769483239659
1: (1.32229241744284,

-0.374252799625128)

14.14 The invgd command

This command returns the inverse Gudermannian function of its argument. The
inverse Gudermannian function ofx is defined as invgd(x) = ln(sec(x) + tan(x)).

Examples:

> 1 invgd
1: 1.22619117088352
> (-0.5 1) invgd
2: 1.22619117088352
1: -0.52223810327844

15 Stack manipulation commands reference

15.1 The dup command

This command makes a copy of the number in level one.
Examples:

> 11 22
2: 11
1: 22
> dup
3: 11
2: 22
1: 22

15.2 The dupdup command

This command makes two copy of the number in level one.
Examples:

40

> 11 22
2: 11
1: 22
> dupdup
4: 11
3: 22
2: 22
1: 22

15.3 The ndupn command

This command makes makesn− 1 (n is in level one) copies of the object in level
two. If n is zero, the object in level two is dropped.

Examples:

> 123
1: 123
> 4 ndupn
4: 123
3: 123
2: 123
1: 123

15.4 The dup2 command

This command makes copies of the numbers in levels one and two.
Examples:

> 11 22
2: 11
1: 22
> dup2
4: 11
3: 22
2: 11
1: 22

15.5 The dupn command

This command takes a number as argument. Only the integer part of that number
is considered. It makes copies ofn (given as argument) stack elements.

Examples:

> 11 22 33 44
4: 11
3: 22

41

2: 33
1: 44
> 4 dupn
8: 11
7: 22
6: 33
5: 44
4: 11
3: 22
2: 33
1: 44

15.6 The drop command

This command removes the element in level one.
Examples:

> 11 22
2: 11
1: 22
> drop
1: 11
> drop

15.7 The nip command

This command removes the element in level two.
Examples:

> 11 22
2: 11
1: 22
> nip
1: 22

15.8 The drop2 command

This command removes the in levels one and two.Caution: once dropped, there
is no way to bring a number back.

Examples:

> 11 22 33
3: 11
2: 22
1: 33
> drop2
1: 11

42

15.9 The dropn command

This command removesn (in level one) elements from the stack.Caution: once
dropped, there is no way to bring a number back.

Examples:

> 11 22 33 44
4: 11
3: 22
2: 33
1: 44
> 3 dropn
1: 11

15.10 The clear command

This command removes all elements from the stack.Caution: once dropped, there
is no way to bring a number back.

Examples:

> 11 22 33 44
4: 11
3: 22
2: 33
1: 44
> clear

15.11 The swap command

This command swaps the elements in levels one and two, that is, the element that
was in level one now is in level two, and the element that was in level two now is
in level one.

Examples:

> 11 22
2: 11
1: 22
> swap
2: 22
1: 11

15.12 The over command

This command makes puts a copy of the element in level two in the stack. (Equiv-
alent to2 PICK .)

Examples:

43

> 11 22
2: 11
1: 22
> over
3: 11
2: 22
1: 11

15.13 The pick3 command

This command makes puts a copy of the element in level three in the stack. (Equiv-
alent to3 PICK .)

Examples:

> 11 22 33
3: 11
2: 22
1: 33
> pick3
4: 11
3: 22
2: 33
1: 11

15.14 The pick command

This command takes an argumentn. It makes a copy of the element in leveln+1.
Examples:

> 11 22 33 44
4: 11
3: 22
2: 33
1: 44
> 3 pick
5: 11
4: 22
3: 33
2: 44
1: 22

15.15 The unpick command

This command replaces the object in leveln+ 2 (n is in level one) with the object
in level two.

Example:

44

4: 1
3: 2
2: 3
1: 4
> 22 3 unpick
4: 1
3: 22
2: 3
1: 4
> 11 4 unpick
4: 11
3: 22
2: 3
1: 4

15.16 The rot command

This command rolls levels one, two and three upwards. The number in level three
goes to level one, the number in level two goes to level three and the number in
level one goes to level two. (Equivalent to3 ROLL.)

Examples:

> 11 22 33
3: 11
2: 22
1: 33
> rot
3: 22
2: 33
1: 11

15.17 The unrot command

This command rolls levels one, two and three downwards. The number in level
one goes to level three, the number in level two goes to level one and the number
in level three goes to level two. (Equivalent to3 ROLLD.)

Examples:

> 11 22 33
3: 11
2: 22
1: 33
> unrot
3: 33
2: 11
1: 22

45

15.18 The roll command

This command rolls levels from two ton+1 (n is in level one) upwards.
Examples:

> 11 22 33 44
4: 11
3: 22
2: 33
1: 44
> 4 roll
4: 22
3: 33
2: 44
1: 11

15.19 The rolld command

This command rolls levels from two ton+1 (n is in level one) downwards.
Examples:

> 11 22 33 44
4: 11
3: 22
2: 33
1: 44
> 4 rolld
4: 44
3: 11
2: 22
1: 33

15.20 The depth command

This command puts the number of elements in the stack in level one.
Examples:

> 11 22 33
3: 11
2: 22
1: 33
> depth
4: 11
3: 22
2: 33
1: 3

46

15.21 The keep command

This command clears all stack levels above then+1, where n is specified in the
stack.

Examples:

> 1 2 3 4 5
5: 1
4: 2
3: 3
2: 4
1: 5
> 2 keep
2: 4
1: 5

16 Miscellaneous commands reference

16.1 The rand command

This command returns a random number from 0 (inclusive) to 1 (exclusive).

16.2 The rdz command

This command takes a number as argument, and stores that number as the random
number generator seed. If the argument is 0, then a seed is generated from the
current time.

16.3 The ! command

This command returns the factorial of the number given as argument. For non-
integers, it returns gamma(x + 1).

Examples:

> 5 !
1: 120
> 6.3 !
2: 120
1: 1271.42363366391

16.4 The lgamma command

This command returns the logarithm of the absolute value of the gamma function
of its argument.

Examples:

47

> 6.3 lgamma
1: 5.30734288962476

16.5 The perm command

This command returns the number of permutations ofn elements (level two) taken
m by m (level one.)

Examples:

> 10 3 perm
1: 720

16.6 The comb command

This command returns the number of combinations ofn elements (level two) taken
m by m (level one.)

Examples:

> 10 3 comb
1: 120

16.7 The min command

This command returns the smallest of its two arguments.
Examples:

> 3 4 min
1: 3

16.8 The max command

This command returns the largest of its two arguments.
Examples:

> 3 4 max
1: 4

16.9 The sign command

For real numbers, this command returns -1 if the number is negative, 0 if it is zero
or 1 if it is positive. For complex numbers, it returns the unit vector in the direction
of a complex number.

Examples:

48

> -6 sign
1: -1
> 0 sign
2: -1
1: 0
> 8 sign
3: -1
2: 0
1: 1
> (3, 4) sign
4: -1
3: 0
2: 1
1: (0.6,0.8)

16.10 The psign command

This command returns -1 if the number is negative, or 1 if it is positive or zero.
Examples:

> -6 psign
1: -1
> 0 psign
2: -1
1: 1
> 8 psign
3: -1
2: 1
1: 1

16.11 The mant command

This command returns the mantissa of its argument.
Examples:

> 1.3515413566333e20
1: 1.3515413566333e+20
> mant
1: 1.3515413566333

16.12 The xpon command

This command returns the exponent of its argument.
Examples:

49

> 1.3515413566333e20
1: 1.3515413566333e+20
> xpon
1: 20

16.13 The rnd command

This command truncates the level two argument (a real or complex number) to n
(in level one) decimal places.

Examples:

> pi
1: 3.14159265358979
> 4 rnd
1: 3.1416

16.14 The type command

This command returns the type of its argument. The type is one of the following:

0 Real number

1 Complex number

2 String

6 Identifier

8 Program

10 Hexadecimal string

12 Tagged object

18 Built-in function

Examples:

> 45 type
1: 0
> "Hello World" type
2: 0
1: 2

50

16.15 The vtype command

This command returns the type of the object stored in the variable whose name is
in the stack (an identifier), or -1 if that variable does not exist.

See thetype command (section 16.14) for a list of type codes.

16.16 The = command

This command is special. It allows you to override the number of stack elements to
show, but only for the next time the stack is displayed. It accepts an argument, but
not from the stack. If there is a numberimmediately following the “=” command,
it is treated as the number of elements to display. If there is no number, or the
number is less than or equal to zero, the whole stack is displayed. Note that there
must beno spacebetween the number and the “=” sign.

16.17 The eval command

This command evaluates the object in level one of the stack.

16.18 The shell command

The shell command is used to run commands fromkalc. To run a command, just
entershell COMMAND. The command will be run, and after it finishes, a mes-
sage will be displayed asking you to press ENTER. When you’re done examining
the output of the command, press ENTER to return tokalc.

If you do not specify a command for The shell command, an interactive shell
will be called instead. When you’re finished, exit the shell as usual, normally by
enteringexit at the prompt or pressing CTRL-D.

17 Time and date commands reference

You can usekalc to do some operations on time and dates, such as calculating how
many days are there between two dates.

Dates are entered in the format MM.DDYYYY, that is, the month is the integer
part, the fractional part is the day and the year.

For example, the 26th of April of 1999 would be represented as 4.261999.
Times are entered in a similar format: HH.MMSS, that is, the hour is the integer

part, and the fractional part contains the minutes and seconds. The hour is always
in 24-hour format. So, 1:30:45pm would be represented as 13.3045.

51

You should not that whenever time is involved, the hours can be though as
degrees, so the functions related to time are useful for dealing with angles in sexa-
gesimal notation.

Here is a list of the commands related to time and dates:

17.1 The date command

This command puts the current date in the stack.
Example:

> date
1: 5.021999

17.2 The time command

This command puts the current time in the stack.
Example:

> time
1: 15.1941

17.3 The ¿hms command

This command converts time (or angles) in decimal format to HH.MMSS format.
Examples:

> 15.3030 >hms
1: 15.18108
> 5.4559 >hms
2: 15.18108
1: 5.272124

17.4 The hms¿ command

This command converts time (or angles) in HH.MMSS format to decimal format.
Examples:

> 15.18108 hms>
1: 15.303
> 5.272124 hms>
2: 15.303
1: 5.4559

52

17.5 The date+ command

This command adds an specified number of days (in level one) to a date (in level
two).

Examples:

> 4.291999 15 date+
1: 5.141999
> 6.201999 60 date+
2: 5.141999
1: 8.191999

17.6 The ddays command

This command returns the number of days between two dates.
Examples:

> 4.291999 5.141999 ddays
1: 15
> 6.201999 8.191999 ddays
2: 15
1: 60

17.7 The hms+ command

This command adds time (or angles) in HH.MMSS format.
Examples:

> 22.59 .01 hms+
1: 23
> 7.3045 .4530 hms+
2: 23
1: 8.1615

17.8 The hms- command

This command subtracts time (or angles) in HH.MMSS format.
Examples:

> 23 22.59 hms-
1: 0.0100000000000001
> 8.1615 7.3045 hms-
2: 0.0100000000000001
1: 0.453

53

17.9 The dow command

This command returns the day of the week for a given date. The returned values
are 0 for Sunday, 1 for Monday, etc...

Examples:

> date
1: 5.021999
> dow
1: 0
> 5.031999 dow
2: 0
1: 1

17.10 The dowstr command

This command returns a string with the three-letter abbreviation of the day of the
week of a given date.

Examples:

> date
1: 5.021999
> dowstr
1: "Sun"
> 5.031999 dowstr
2: "Sun"
1: "Mon"

17.11 The tstr command

This command takes as argument a date (in level two) and a time (in level one),
and returns a string representing that time and date.

Example:

> date
1: 4.271999
> time
2: 4.271999
1: 15.3257
> tstr
1: "Tue 04/27/1999 15:32:57...

54

18 Complex number commands reference

18.1 The r¿c command

This command takes two real numbers as arguments, and returns a complex number
whose real part is the level two argument and whose imaginary part is the level one
argument.

Examples:

> pi 1 exp
2: 3.14159265358979
1: 2.71828182845905
> r>c
1: (3.14159265358979,

2.71828182845905)

18.2 The re¿c command

This command takes a real number as argument, and returns a complex number
whose real part is its argument and whose imaginary part is zero.

Examples:

> pi
1: 3.14159265358979
> re>c
1: (3.14159265358979,0)

18.3 The im¿c command

This command takes a real number as argument, and returns a complex number
whose real part is zero and whose imaginary part is its argument.

Examples:

> pi
1: 3.14159265358979
> im>c
1: (0,3.14159265358979)

18.4 The c¿r command

This command takes a complex number as argument and returns two real numbers,
representing its real and imaginary parts.

Examples:

55

> (3, -4)
1: (3,-4)
> c>r
2: 3
1: -4

18.5 The re command

This command takes a complex number as argument and returns a real number
representing its real part.

Examples:

> (3, -4)
1: (3,-4)
> re
1: 3

18.6 The im command

This command takes a complex number as argument and returns a real number
representing its imaginary part.

Examples:

> (3, -4)
1: (3,-4)
> im
1: -4

18.7 The conj command

This command returns the conjugate of its argument.

> (3, -4)
1: (3,-4)
> conj
1: (3,4)

18.8 The arg command

This command returns the argument of a complex number, that is, it’s angle when
represented in polar form.

Examples:

56

> set anglemode deg
> (4 4)
1: (4,4)
> arg
1: 45
> (-2 4)
2: 45
1: (-2,4)
> arg
2: 45
1: 116.565051177078

19 Relational commands reference

The commands in this section deal withflags. A flag is just a real number. If its
value is 0, the flag isfalse. Any other value meanstrue.

19.1 The == command

This command compares its two arguments and returns 1 if they are equal.
Examples:

> 4 4 ==
1: 1
> 4 5 ==
2: 1
1: 0

19.2 The != and # commands

These commands (they are actually the same command, but with two names) com-
pare their two arguments and return 1 if they are not equal, that is, different.

Examples:

> 4 4 !=
1: 0
> 4 5 #
2: 0
1: 1

19.3 The ¡ command

This command compares its arguments and returns 1 if the one in level two is less
than the one in level one.

Examples:

57

> 4 6 <
1: 1
> 4 -2 <
2: 1
1: 0

19.4 The ¿ command

This command compares its arguments and returns 1 if the one in level two is
greater than the one in level one.

Examples:

> 4 6 >
1: 0
> 4 -2 >
2: 0
1: 1

19.5 The ¡= command

This command compares its arguments and returns 1 if the one in level two is less
than or equal to the one in level one.

Examples:

> 4 5 <=
1: 1
> 4 4 <=
2: 1
1: 1
> 4 3 <=
3: 1
2: 1
1: 0

19.6 The ¿= command

This command compares its arguments and returns 1 if the one in level two is
greater than or equal to the one in level one.

Examples:

> 4 5 >=
1: 0
> 4 4 >=
2: 0
1: 1

58

> 4 3 >=
3: 0
2: 1
1: 1

19.7 The and command

This command performs a logicaland between two flags. The result is 1 if both
flags are true.

Examples:

> 1 0 and
1: 0
> 1 1 and
2: 0
1: 1

19.8 The or command

This command performs a logicalor between two flags. The result is 1 if either
flag is true.

Examples:

> 1 0 or
1: 1
> 0 0 or
2: 1
1: 0

19.9 The xor command

This command performs a logicalxor between two flags. The result is 1 if only
one of the flags is true.

Examples:

> 0 1 xor
1: 1
> 1 1 xor
2: 1
1: 0

19.10 The not command

This command inverts the flag given as argument to it. A true becomes a false, and
a false becomes a true.

Examples:

59

> 1 not
1: 0
> not
1: 1

20 String commands reference

20.1 The + command (for strings)

The + command, when at least one argument is a string, does string concatenation.
The string at level one is appended at the end of the string at level two. If one of
the two arguments is not a string, it will be converted to a string.

Examples:

> "Hello, " "World!"
2: "Hello, "
1: "World!"
> +
1: "Hello, World!"
> 45 +
1: "Hello, World!45"

20.2 The size command

This command returns a real number representing the size of the string given as
argument, in bytes.

Examples:

> "Hello, World!"
1: "Hello, World!"
> size
1: 13

20.3 The ¿str command

This command converts its argument to a string representing it. Numbers are con-
verted using the current setting of precision, number format and coordinate mode
(see section 10). Strings are not modified.

Examples:

> (1, 3)
1: (1,3)
> >str
1: "(1,3)"

60

> 4 >str
2: "(1,3)"
1: "4"

20.4 The str¿ command

This command takes a string as argument, and evaluates it as if it were a series of
commands typed at command line.

Example:

> "6 16 sqrt +"
1: "6 16 sqrt +"
> str>
1: 10

20.5 The num command

This command takes a string and returns a real number, whose value is the ASCII
code for the first character of the string.

Examples:

> "A"
1: "A"
> num
1: 65
> "c" num
2: 65
1: 99

20.6 The chr command

This command takes a real number representing an ASCII code as argument, and
returns a string with the character that code represents.

Examples:

> 65 chr
1: "A"
> 99 chr
2: "A"
1: "c"

20.7 The head command

This command takes a string and returns another string containing just the first
character of the string.

Examples:

61

> "Hello, World"
1: "Hello, World"
> head
1: "H"

20.8 The tail command

This command takes a string and returns another string containing the input string
minus its first character.

Examples:

> "Hello, World"
1: "Hello, World"
> tail
1: "ello, World"

20.9 The pos command

This command takes two strings as argument. The string in level one is searched
in the string in level two. A real number is returned, representing the position of
the start of the substring in the string. If no match was found, zero is returned.

Examples:

> "Hello, World" "W" pos
1: 8
> "Hello, World" "x" pos
2: 8
1: 0

20.10 The sub command

This command takes three arguments: a string in level three, and two real numbers
in levels two and one, representing the starting position and the ending position. A
new string is returned, which is a the part of the input string between the starting
and ending positions, inclusive.

If the starting position is less than one, it is considered as one. If the ending
position is greater than the length of the string, it is considered as the length of the
string. If the ending position is less than the starting position, an empty string is
returned.

Examples:

> "Hello, World"
1: "Hello, World"
> 4 8 sub

62

1: "lo, W"
> 3 3 sub
1: ","

20.11 The repl command

This command takes three arguments: a string in level three, a real number in level
two and another string in level one. The characters of the string in level three,
starting at the position in level two, are substituted by the string in level one.

Examples:

> "Hello John" 7 "Mary" repl
1: "Hello Mary"
> 7 "L" repl
1: "Hello Lary"
> 10 "ry" repl
1: "Hello Larry"

20.12 The str¿id and $¿id commands

These command convert the string in level one to an identifier.
Examples:

> "Hello"
1: "Hello"
> str>id
1: ’Hello’
> "World" $>id
2: ’Hello’
1: ’World’

20.13 The id¿str and id¿$ commands

These commands convert the identifier in level one to a string. The difference
between these commands and>str is that the latter inserts the quotes as part of
the string.

Examples:

> ’Hello’
1: ’Hello’
> id>str
1: "Hello"
> ’World’ id>$
2: "Hello"
1: "World"

63

> ’World’ >str
3: "Hello"
2: "World"
1: "’World’"

21 Memory commands reference

21.1 The sto command

This command stores an object (in level two) in memory, with the name given in
level one (an identifier).

21.2 The rcl command

This command recalls from memory the object whose name is in level one (an
identifier).

21.3 The purge command

This command deletes from memory the object whose name is in level one (and
identifier). Be careful: there is no way to bring back an erased object.

21.4 The clvar and clusr commands

These commands delete the whole contents of memory. Becausethere is no way
to bring back the memory contents, these commands asks you for confirmation
before. Answer ’y’ at the prompt to delete the memory.

21.5 The clvar command

This command deletes the whole memory, without asking you for confirmation
before.

21.6 The coldstart command

This command resetskalc to its initial state. The whole memory is cleared, the
options are set to their default values, the stack is cleared and the last arguments
are erased. There is no prompt for confirmation, nor is there a way to undo this
command.

64

21.7 The vars command

This command displays all objects stored in memory.

21.8 The disksto command

This command saves the object in level two to a file whose path is given in level
one (as an identifier).

21.9 The diskrcl command

This command recalls an object saved in the file whose path is given as argument
(and identifier) in level one.

21.10 The pwd command

This command prints the current working directory.
Examples:

> pwd
/home/ekalin/progs/kalc

21.11 The cd command

This command changes the current working directory to the directory given as
argument (an identifier) in level one.

Examples:

> ’/usr/bin’
1: ’/usr/bin’
> cd
> pwd
/usr/bin

65

	Introduction and Disclaimer
	Using kalc -- a brief tutorial
	Reverse Polish Notation
	Other functions
	Complex numbers
	Polar form

	Entering commands
	Getting help

	Running kalc
	Using Readline
	Readline essentials
	Killing text
	Numeric Arguments
	The history
	Other commands

	Reusing the last arguments
	Using lastarg for error recovery

	Working with other bases
	Options relevant to hexadecimal strings
	The current word size
	Hexadecimal string operations
	Shifts and rotations

	Converting to and from hexadecimal strings

	Using the memory
	Listing and erasing the memory
	Saving objects to disk

	Other kinds of objects
	Strings
	Tagged objects
	Inf and NaN's

	The status file
	Customization
	Angle mode
	Coordinate mode
	Number display format and precision
	Prompt
	Number of stack levels to display
	Screen width

	Arithmetic commands reference
	The + command
	The - command
	The * command
	The / command
	The inv command
	The mod command
	The chs and neg commands
	The abs command
	The ceil command
	The floor command
	The ip command
	The fp command
	The % command
	The %t command
	The %ch command
	The gcd command
	The lcm command

	Exponential and Logarithmic Commands Reference
	The exp command
	The ln command
	The ˆ command
	The xroot command
	The sq command
	The sqrt command
	The expm1 command
	The lnp1 command
	The log command
	The alog command
	The cis command

	Trigonometric commands reference
	The pi command
	The sin command
	The cos command
	The tan command
	The sec command
	The csc command
	The cot command
	The asin command
	The acos command
	The atan command
	The atan2 command
	The asec command
	The acsc command
	The acot command
	The vers command
	The hav command
	The d>r command
	The r>d command

	Hyperbolic commands reference
	The sinh command
	The cosh command
	The tanh command
	The sech command
	The csch command
	The coth command
	The asinh command
	The acosh command
	The atanh command
	The asech command
	The acsch command
	The acoth command
	The gd command
	The invgd command

	Stack manipulation commands reference
	The dup command
	The dupdup command
	The ndupn command
	The dup2 command
	The dupn command
	The drop command
	The nip command
	The drop2 command
	The dropn command
	The clear command
	The swap command
	The over command
	The pick3 command
	The pick command
	The unpick command
	The rot command
	The unrot command
	The roll command
	The rolld command
	The depth command
	The keep command

	Miscellaneous commands reference
	The rand command
	The rdz command
	The ! command
	The lgamma command
	The perm command
	The comb command
	The min command
	The max command
	The sign command
	The psign command
	The mant command
	The xpon command
	The rnd command
	The type command
	The vtype command
	The = command
	The eval command
	The shell command

	Time and date commands reference
	The date command
	The time command
	The >hms command
	The hms> command
	The date+ command
	The ddays command
	The hms+ command
	The hms- command
	The dow command
	The dowstr command
	The tstr command

	Complex number commands reference
	The r>c command
	The re>c command
	The im>c command
	The c>r command
	The re command
	The im command
	The conj command
	The arg command

	Relational commands reference
	The == command
	The != and # commands
	The < command
	The > command
	The <= command
	The >= command
	The and command
	The or command
	The xor command
	The not command

	String commands reference
	The + command (for strings)
	The size command
	The >str command
	The str> command
	The num command
	The chr command
	The head command
	The tail command
	The pos command
	The sub command
	The repl command
	The str>id and $>id commands
	The id>str and id>$ commands

	Memory commands reference
	The sto command
	The rcl command
	The purge command
	The clvar and clusr commands
	The _clvar command
	The coldstart command
	The vars command
	The disksto command
	The diskrcl command
	The pwd command
	The cd command

